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A method for the numerical integration of the nonlinear Schrtidinger equation is derived 
which uses variable time steps and a moving spatial grid. The benefits of adaptation are 
clearly demonstrated in the numerical experiments reported. The simple technique employed 
to move the nodes can be applied with little coding effort to general one-dimensional systems 
of PDEs. c’ I986 Academic Press, Inc. 

I. INTRODUCTION 

The numerical treatment of the initial value problem for the nonlinear 
Schrodinger equation 

iU{ + z4x,v + q 1 z4 1 2 z4 = 0, -co<.x<m,O<t<T, (1.1) 

u(.x, 0) = u&Y), -cc <xc cc (1.2) 

(zi complex, i’= -1, q a given positive constant) has attracted much attention in 
the past few years (see Delfour et al. [4], Griffiths et al. [8], Herbst and Mitchell 
[9], Herbst et al. [lo], Sanz-Serna and Manoranjan [17], Sanz-Serna [16], and 
Verwer and Sanz-Serna [ 18,211). 

The linear Schrodinger equation 

iu[ + ZI.~~ = 0 

models dispersive situations and its solutions have an amplitude which decays like 
f ~ “’ for t, x + ZJ, x/t tixed (Whitham [24] ). The cubic term in ( 1.1 j opposes dis- 
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persion and thus makes it possible for the nonlinear Schrodinger equation to 
possess solutions where the competing forces of nonlinearity and dispersion balance 
each other exactly. The typical example of such a balanced solution is provided by 
the soliton. 

The integration of bound states of solitons provides a stringent test for numerical 
schemes due to the large spatial and temporal gradients developing in the solution. 
In fact, Herbst et al. [ 101 and Sanz-Serna and Verwer [18] found that when work- 
ing on a uniform grid in space and employing constant time steps, it was impossible 
to compute an accurate solution unless extremely small mesh sizes were chosen. 

In this paper we attempt to overcome these difliculties by devising a scheme with 
time und space adaptive capabilities. The technique used for the time step control is 
the one commonly employed in ODE codes [ 19]. The adaptation in space (grid 
movement) is based on the equidistribution of the arclength of the solution and 
therefore can be regarded as a modification of the procedure suggested by White 
[22,23]. in our code the time step t,, -+ t,,+ i involves two stages. The first of these 
consists of advancing the solution on a fixed non-uniform grid by a suitable linite- 
element or linite-difference discretization. Substantial parts of existing fixed-grid 
programs can be employed to code this stage. The second stage is problem indepew 
dent (i.e., would apply to any one-dimensional time dependent system of PDF%), 
only involves a moderate computational cost and can be coded once and for all as 
a subroutine. 

The paper is divided into live sections. Section 2 reviews White’s technique. Sec- 
tions 3 and 4 describe the present procedure as applied to a gerteral one-dimen- 
sional system of PDEs and to ( l.l), respectively. Numerical experiments are repor- 
ted in Section 5. The last section is devoted to a discussion of the scope of the 
present technique, its possible extensions and its relations to other available 
methods for node movement. 

The literature on moving grids has grown substantially over the past few years; 
see in particular Miller and co-workers [ 13, 14, 71, Davis and Flaherty [2]: Dwyer 
et al. [6] and the recent survey by Thompson [20]: where further references can be 
found. A comparison of the numerical performance of the method in this paper with 
those of other available techniques is outside the scope of the present article. 

II. WHITE'S TECHNIQUE 

White [23] has suggested a technique for integrating numerically systems of d 
time dependent, first order partial differential equations in one space variable X. 
technique replaces the variables X, t by the new variables s, t, where z is an 
arclength-like coordinate. The advantage of this procedure is that in the new 
variables the solution u(.s, t) cannot develop large spatial gradients &.4/&s. With 
White’s technique x becomes a dependent variable and therefore the transformed 
system involves d + 1 scalar unknowns. Furthermore the transformation introduces 
a coupling between values of ZA and x which makes it impossible for the (sparse) dis- 
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Crete equations to possess banded form (see White [23, Fig. 61 for an illustration of 
the systems which appear). 

III. THE BASIC PROCEDURE 

We consider now a modification of White’s approach whereby it is not necessary 
to carry out explicitly. the change to (s, tj-variables. In the new procedure the dis- 
cretization takes place in the original (x, rj-variables and there is no coupling 
between the computation of the values U; and the computation of the nodes XT, so 
that the systems of equations to be solved in order to advance the solution in time 
are banded and only involve d scalar unknowns per grid point. 

Consider a one-dikensional, time-dependent system of the form 

where ~4 is a d-dimensional vector. (The material in this section may be extended to 
more general one-dimensional situations in a straightforward manner.) The system 
(3.1) is supplemented by the initial condition 

24(x, 0) = &-J(x), XL <X<XR (3.2) 

and by suitable boundary conditions. 
Assume that at the time level tH, we have computed a (non-uniform) grid x;, 

j = 0, l,..., J, together with approximations U; to ~(x;, t,z). In order to advance the 
solution and the grid up to time t,,+ i = t,, + rn+, , rH+ i > 0, we proceed in two 
stages: 

(i) Use a suitable numerical scheme on the grid {x;} to obtain 
approximations u; + i to 24(x;, tn + i j. 

(ii) Join the points (XT, UT+ ’ j by straight lines, compute the length f3” +’ of 
the resulting polygon. Find the points P;+ i, j= 0, l,..., J, on the polygon which 
divide its total length into J equal parts. Define the new nodes x7 + ‘, j = 0, l,..., J7 as 
the projection of P;+ l onto the x-axis. Compute U; + i, j= 0, l,..., J, as an 
approximation to .u(x; ‘-I, t,,+ i) by means of a suitable interpolation of the values 
x;, o;+‘, j=@ I,..., J. 

Stage (i) above involves the same coding and computational effort as the advan- 
cement from t,z to tH+ i of the solution of (3.1) on a non-uniform time-independent 
grid. Therefore, a substantial part of existing non-adaptive codes could be used to 
construct adaptive programs. On the other hand, Stage (ii) is computationally 
inexpensive and is problem independent. It is therefore possible to code this stage 
once and for all. An efficient means of accomplishing this is presented in the follow- 
ing 
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(1) GivenJ,.y;, @;+‘,,j=O, l,..., J, and lzy, j= 1, 2 ,..., J3 satisfying 11;: = .Y; - .>:;- i 

(2) &=O. 

(3) Forj=l,Z . . . . . J. .S;=.S+, +((./z~)~+~~~+‘-~~~~~~~)~‘~. Nextj. 
(4) dESJ/y. k=l, uy;+‘cAy.J yj+‘zuy;. q+Lq+‘. [!y+Lp;+~. 

(5) Forj= 1, 2 ,..., J- I. B= jd. 

(6) If B < Sk go to (8). 

(7) k=k+ 1. Go to (6) 

(8) ,q+‘=qm, +(B-.S~,)h;/(S~ -Sk-l). 

(9) If hi # 1 and k #J compute U;+ ’ as the value at XT+ ’ of the citbic 
polynomial through (x; + j$ pi::), i= -2, --l,O, 1. If k= 1, compute iJ;+’ as the 
value at A-; + r of the quadratic polynomial through (.x; + i9 Q$ ), k = -1, O7 i. II’ 
k = J. compute U;+ 1 as the value at .Y;+ ’ of the quadratic polynomial through 
tJ$: +!3 0;;;): k= -2: -1, 0. 

(10) i7;+‘=.y;+’ -.y;. 

( 11) Next j. 

(12) /z;+‘=Y;+‘-Y:;. 

il3) Return .Y;!+‘, U;+‘, j=O, l,..., J; h;+‘. j= 1,2 ,... ~ Jo 

§ome comments are in order. Step (3) computes the length Sj of the polygon 
between (.y;, o;+‘) and (x;, o;+‘). Steps (6) and (7) find the interval .xY~~, <x<.$ 
which contains the point P;+ ‘. Once k is available .Y;+ I. U; +’ can be readily com- 
puted. We have suggested cubic interpolation for U;‘- 1 as this is the form of inter- 
polation we employed in the experiments reported later. but it is clear that other 
choices are possible. 

In order to compute the initial grid {$‘~~ the following procedure is adopted: 
The nodes are first placed provisionally according to a uniform distribution in 
.xL <.Y<x~. Then the initial datum 21~ is evaluated at the nodes and a polygon fit- 
ted through the resulting values as described in stage (ii) above. Division of the 
total length of the polygon into equal parts leads to an improved set of nodes. The 
procedure is iterated until two consecutive grids differ by less than a smah 
tolerance. 

It is important to keep in mind that the arclength of a curve in the X. u space 
depends on the choice of units for x and u. In the subroutine presented above it has 
been tacitly assumed that both x and u represent suitable non-dimensionai values 
i.e., that (3.1) is written in non-dimensional form. In practice, it is not necessary to 
rewrite the system being solved to render it non-dimensional. It rather suffices to 
replace step (3) above by 
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Here, LX is a positive parameter whose square root represents the ration between a 
typical (dimensional) u value and a typical (dimensional) x value. 

Finally it has been found in practice that it is not advisable to have, at a given 
time level, elements of widely different sizes /$’ = X; - x;- , , i,e., sizes which differ by 
several orders of magnitude. A simple means of ensuring that for each H 

(3.3) 

where b is a prescribed constant, is afforded by the replacement of step (3’) by 

(3”) For j= 1, 2,..., J. Temp = 11 DJ’+ i - 07:: 11:. If temp > fi~(/z;)~ then 
temp = /Jx(~;)~. Sj = SjP r + (c$/r;)’ + temp)“‘. Next j. 

Now we have that 

and (3.3) follows readily. 
In our experiments we used /? = 100 so that max hj 5 10 min lzj. 

IV. THE CUBIC SHROEDINGER EQUATION 

In the time interval 0 < t < T under consideration the solutions of (l.l)( 1.2) in 
which we are interested are negligibly small outside an interval xL <.x <xR. 
Therefore, in our numerical study, the pure initial value problem (1.1 )-( 1.2) is 
replaced by an initial-boundary value problem in x[> <x < xR, 0 < t < T, with 
homogeneous Neumann boundary conditions at x = xL, .xR (see [8,9, 181). For 
numerical work u is decomposed into its real and imaginary parts L) and ~1, respec- 
tively. This leads to a system of d = 2 real partial differential equations. Assume that 
at t = tn a non-uniform grid xJ’, j = 0, l,..., J, X; = xL, .x; = xR and corresponding 
approximations P’J?, E’; have been computed. The procedure for stepping to tn + , = 
tn+~n+l is as follows. First the system of partial differential equations is discretized 
in space on the grid x; by means of the usual three point replacement for d2/dxz 
with the standard treatment of the boundary conditions. This results in a system of 
ordinary differential equations of the form 

dU 
z =F,,(U)=S,,U+ B(U)U, (4.1) 

where U= U(t) = (Ul,..., UT) with Uj = ( Vj, Wj)T and S,, U and B(U) U denote the 
contributions from the linear and nonlinear terms U.~~, 1 zd I2 U, respectively. The 
matrix S,, is block-tridiagonal with 2 x 2 blocks depending only on the lengths h; 
and B(U) is block diagonal. 

We are interested in computing approximately the value at t = tm+ i of the 
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solution of (4.1) which at t = t,, takes the value U” = ( UiF ,..., U’JF)‘, Ly = ( Vi, FFy! Jr3 
j = 0, l,..., J. In order to do so, and benetiting from the experience gained in [I!?]? 
we take a single step of the implicit midpoint rule. More precisely P+ ’ is com- 
puted from 

u -n+lEy+T H+~FJ(v+ Pk1)/2), (4.2) 

where P = ( Qr,..., i??‘jr)‘, UJ = ( v;, m;)‘, j = 0, l,..., J. Once p + ’ is available a 
new grid {.xJ’ + 1 1 and a new solutron V + ’ are computed by means of the sub- 
routine described in the previous section, thus completing the step z,* -+ ttz + , . 

The solution of the nonlinear system of algebraic equations (4.2) deserves some 
comments. An initial approximation U* to U --‘+ ’ is first computed by means of the 
standard Euler rule 

This is followed by the corrector stages ( UEO, = U* ), r = 0, 1, 2,..., 

until two consecutive iterates Urr,, ULr + L, are found which differ (in the maximum 
norm) by less than a prescribed tolerance. (This was chosen to be 5 x IO-’ in our 
experiments.) Then, U” + ’ is taken to be UCr + , , . The corrector stages can be regar- 
ded as a modified Newton iteration for (4.2). See [fg] for a further discussion of 
this point and for an efticient implementation of the sorrector stages. We emphasize 
that our computations in the evolution U” --+ C”+’ are those of a time step of 
Method 0 in [18-j except for the fact that now the grid {-XT) is not uniform. The 
conservation of the L’ norm in [18] can be shown easily to apply here? ie., 
11 lY\l = 11 U’+’ 11. On the non-uniform grid {.$‘j the L2 norm of V is given by 

+ ; h+j ( vy + ( wg2). 

Note that both a predicted value U* which is of tirst order accuracy in time and a 
corrected value C?“+’ of second order are available and therefore it is possibie to 
implement a standard control of the time steps based on local extrapolation and 
absolute error per step (Shampine and Gordon [19]). Namely, when iJ* and P+’ 
have been obtained we compute the maximum norm 
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as an estimate of the error due to time stepping in (4.1 j. Note [19] that in doing 
so, one really estimates the error in the Zower order approximation U*. Here ii.\/ ~ 
denotes the usual Lx norm for 2(J+ 1) real vectors. If EST does not exceed a 
prescribed tolerance TOL (which was 0.01 in our experiments) the vector I!?“+’ is 
accepted and (after the new grid Ix;+ ‘} is available) we are ready to take a new 
step UP k3 tti+2=tn+l+zn+2, T~+~=T"~~. If, on the contrary, EST> TOL the 
computed value P+’ IS discarded and the time step t,, -+ fn+, is attempted again 
with a length ~~~~~ In both instances ~~~~ is obtained from 

T “~~” = 0.5~~ + r(TOL/EST)i? 

The “safety” factor 0.5 is introduced to minimize the risk of rejections. In fact it was 
found that our algorithm neuer rejected steps and this was so even in problems with 
solutions whose character changed signilicantly during the time evolution. It is of 
course possible to increase the value 0.5 to, say, 0.8 or 0.9 but experiments in that 
direction were not undertaken. 

V. NUMERICAL EXPERIMENTS 

In this section we apply the space/time adaptive algorithm outlined above to 
some of the test problems considered in [18]. For comparison we also use an 
algorithm based on a uniform x-grid with time adaption. 

(A) Single Soliton Solution. Here, q = 1 and u,, is given by 

uo(x) = fi exp(O.5ix) sech x 

leading to the soliton solution 

u(x, t) = $ exp(i(O.5x + 0.75t)) sech(x - t). 

In the x, 1 u 1 plane this represents a wave of height 3 initially located at .Y = 0 and 
travelling to the right at speed 1 without changing its shape. Note, however, that 
the real and imaginary parts of u are oscillatory. As in [ 181 we place the (artilicial) 
boundaries at X~ = -30, xR = 70 and take T= 30 to bear out the effects of long 
time integrations. In these, dissipative schemes are likely to reduce significantly the 
amplitude of the computed wave, while non-dissipative schemes are threatened by 
dispersion leading to spurious oscillations. 

The problem was lirst discretized by means of central differences on a fiked 
unz$orm x-grid of width 11, along with the variable time stepping procedure outlined 
in the previous section. Starting with h = 1, the interval length had to be halved 
twice (h = 0.25) before the theoretical solution was reproduced satisfactorily. Note 
that this corresponds to J=400. The result is shown in Fig. 1, where virtually 
negligible upstream and downstream oscillations are still present. (The solid line 
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r----l-~-- r-8 r 
-50 -40 -30 -2.0 -10 0 10 20 30 40 50 60 70 

FIG. I. q = 1 solution at T= 30. Uniform x-grid (401 nodes) with variable time stepping. * denotes 
the numerical solution; Denotes the exact. 

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 

FIG 2. As in Fig. 1 except that space adaptation (101 nodes) has been used. 
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l-50 

l-25 

TABLE I 

.x-Adaptive Non-adaptive 

J L* L2 L= L2 

25 0.1030 0.3702 
50 0.0276 0.0676 

loo 0.0063 0.0161 
200 0.0016 0.0039 
400 not tested 

not tested 
0.7915 1.6604 
0.5664 0.7688 
0.1123 0.1904 
0.0256 0.0407 

represents the theoretical solution which has moved from x= 0 to X= 30.) 
Approximately 600 time steps were taken with two or three iterations of the correc- 
tor per step. 

Next, we employed the space/time-adaptive algorithm described in the previous 
section. In all the experiments the factor cx governing the “aspect ratio” was set 
equal to 10P3. We did not attempt to ‘<trim” the parameters IX or /I and we 
emphasize that all the experiments in the paper correspond to one choice of u and 

0.25 
I 

FIG. 3. q= 18 solution at T=O.98. Uniform x-grid (1281 nodes) with variable time stepping. * 
denotes the numerical solution. Theoretical solution unavailable. 
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/I. Starting with J= 25 we doubled J twice before reaching, with J= 100, a solution 
of comparable accuracy to that of the scheme with no space adaption and h = 0.25. 
The result is depicted in Fig. 2, where no oscillations whatsoever are present. The 
number of time steps was similar to that in the tixed grid experiment. 

Experiments were conducted in order to ascertain the convergence properties of 
the new technique. The results in Table I correspond to l= 1 and show an fI?(J--‘) 
behaviour in the error. Due to our choice of tolerance T0L, the contribution of the 
time stepping to the error is negligible. For comparison we have also included the 
error in the scheme without space adaption. The norms LX, Lz are as defmed 
previousiy~ 

(B) Bound State of Three Solitons [12]. Now q= 18 and 

uo(x) = sech x 

The solution of this problem is periodic in time and develops extremely large space 
and time gradients thus providing a stringent test to any numerical scheme 
[lo, 181. As in [18] we set X~ = - 20, xR = 20, T=O.!B. For the fixed-space, time- 
adaptive algorithm h had to be successively halved until a value of l/32 was found 
which provided an accurate solution. (The theoretical solution is not available and 

-20 -1D 0 10 20 

FIG. 4. ,4s in Fig. 3 except that space adaptation (201 nodes) has been used. 
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accuracy was checked against a numerical solution calculated on a very line mesh.) 
This value L = l/32 corresponds to 1281 grid points. The solution at T= 0.98 is 
depicted in Fig. 3., where the computed points have been joined by straight lines. 
An approximate number of 450 time steps were taken with three correction 
iterations at each step regardless of the step length. This oscillates between 0.0051 at 
locations where the solution is smooth and 0.00086 at places with large gradients. 
In [18] a lixed time step of T = 0.00625 was used. One of the drawbacks encoun- 
tered there stemmed from the fact that in the steps corresponding to large changes 
in the solution it was extremely costly or even impossible to get convergence in the 
iteration of the corrector. 

Figure 4 corresponds to the space-time adaptive algorithm with J=200. The 
solution with J= 100 was also found to be good except for a small phase error. The 
behaviour of the time stepping mechanism was similar to that of the fixed x-grid 
algorithm reported above. The number of steps required in Fig. 4 was 464. 

VI. CONCLUDING REMARKS 

In White’s original technique, the nodes xj move according to differential 
equations which are coupled to the evolution equations for the unknowns Uj. This 
coupling is also present in the approaches of Miller and co-workers [ 13,14, 71, 
Dukowicz [5] and Mosher [15]. In this paper the procedures for determining the 
nodes and computing the solution have been decoupled. Our rationale for doing so 
is that the node positions and solutions values do not play a symmetric role. When 
a set of nodes {x;} is given, the interest lies in computing a solution U; which 
comes as close as possible to the theoretical u(x;, tn). However, we are not 
interested in obtaining very uccurutely any prescribed set of nodes {x7}. It is suf- 
licient to have a set of nodes which in some sense allows a satisfactory dis- 
cretization of the solution at hand. An alternative technique for uncoupling the 
computation of the grid and that of the solution has been suggested by Manoranjan 
[Ill. 

It should also be pointed out that our technique for determining the nodes is 
equivalent to the following procedure: First, compute approximately the integrals 

by replacing the derivative by the piecewise constant function given by 
(l=J;+l- uJ’Tii)/h; in XT- i < p <x7. (This corresponds to Step (3) of our algorithm.) 
Then lind, by inverse linear interpolation, the values x; +’ so that the arclength 
between xL =x;+’ and x;+’ is j/J times the total S(-Y;) (Step (8)), so that as j 
varies 

dp -constant. (6.2) 
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When seen in this light the procedure appears to be closely related to that suggested 
by de Boor [3] in time independent situations. It is possible by merely changing 
§tep (3) in the algorithm to replace the function (1 + I\ uP ~~~jl~’ being 
equidistributed in (6.1 j-(6,2) by other functions. In particular, the choice 
(1 + ii14p \i;y and its modification have received much attention in the literature 
going back at least to Ablow and Schechter [l]. In fact, the reading of the first 
draft of the present paper has led M. A. Revilla to experiment with the choice 
(1 + 11 llPP 11 Gji”. He has found [25] that this new equidistribution principle can lead 
to a further halving of the number of grid points required~ 

In our approach there is much freedom in the choice of method used to advance 
the solution U’ + F +’ on the fixed grid {.$‘J. We also experimented with a dis- 
cretization employing piecewise linear finite elements and found that it did not 
improve on the simple linite difference scheme described in Section 4. This is in con- 
trast to the situation for uniform grids where finite elements perform significantly 
better than finite differences, see the experiment in Grifliths et al. [S]. The present 
paper thus supports Thompson’s claim [20] that -‘when the grid adapts to the 
solution most algorithms work well.” 

Finally we would like to point out that there is no need to keep the number J of 
subintervals constant in time. Our algorithm monitors the total length of the 
solution curve at each time step and it would be a simple matter to make J propor- 
tional to that total length. 
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